

1ª Questão

Responda as perguntas abaixo, justificando suas respostas.

- a) Uma granada cai verticalmente. Se, durante a queda, ela explode e se fragmenta em vários pedaços, o que ocorrerá com o movimento do centro de massa? (0,5 pontos)
- b) Dois objetos A e B movem-se ao longo de trajetórias paralelas, quando vistos de um determinado sistema de referência. É possível que essas trajetórias se cruzem quando vistas de outro sistema de referência? (0,5 pontos)
- c) Um objeto está equilibrado por uma massa padrão em uma balança de dois pratos dentro de uma campânula. Se o ar for retirado da campânula, a balança continuará equilibrada? Se não, para que lado ela pende? (0,5 pontos)
- d) Duas esferas condutoras iguais são carregadas com cargas elétricas de mesmo valor e colocadas a uma pequena distância fixa entre elas. Em que caso a força de interação elétrica entre as esferas é maior: quando as duas cargas têm o mesmo sinal ou quando têm sinais opostos. (0,5 pontos)

ງ a	^	uestão	`
Z -	W	uesta	J

Uma galinha, um porco e um cachorro saem do celeiro, nessa ordem, em intervalos
de tempo iguais. A galinha sai primeiro, com velocidade de 15 metros por minuto. O
cachorro sai por último com velocidade de 30 metros por minuto. Os três chegam na
porteira da fazenda, também em intervalos de tempo iguais, só que na ordem inversa. Qual
foi a velocidade do porco? (2 pontos)

uestão

êmbolo pesado e móvel. O cilindro começa a subir com aceleração 2g. A temperatura do gás é mantida constante e o volume sob o êmbolo fica 2/3 do original. Ache a massa M do êmbolo. Considere a pressão externa igual a 10 ⁵ N/m ² . (2 pontos)				

4ª Questão	
------------	--

Um pequena partícula de massa m e carga q é colocada no ponto interno mais alto de uma esfera isolante oca de diâmetro d, perfeitamente lisa. É claro que, se ela for solta, cairá verticalmente.		
caira verticalmente. Qual é o valor mínimo de uma carga Q que deve ser colocada na parte interna mais baixa da esfera para manter a carga q em equilíbrio? E qual é a carga mínima para que esse		
equilíbrio seja estável? (2 pontos)		

5ª Questão
Uma lente convergente tem distância focal f. Ache a menor distância possível entre um objeto pontual e a imagem real desse objeto. (2 pontos)