

Esquema de Pontuação da Segunda Fase do CNF - Nível 3

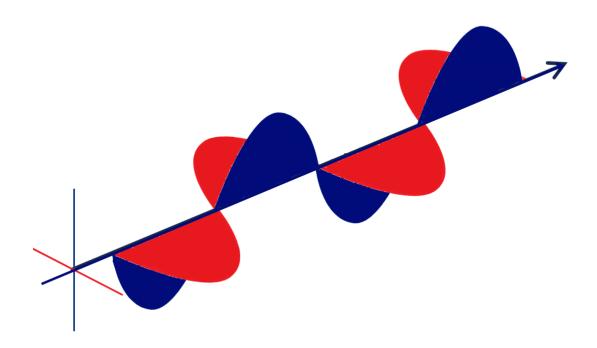
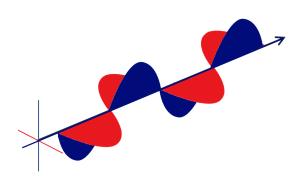


Tabela de constantes

Constante	Valor
Velocidade da Luz (c)	$299.792.458\mathrm{m/s}$
Constante de Planck (h)	$6,63\times10^{-34}\mathrm{J\cdot s}$
Constante Gravitacional (G)	$6,67 \times 10^{-11} \mathrm{m^3 kg^{-1} s^{-2}}$
Carga do Elétron (e)	$1,60 \times 10^{-19} \mathrm{C}$
Constante de Boltzmann (k)	$1,38 \times 10^{-23} \mathrm{J/K}$
Número de Avogadro (N_A)	$6,02 \times 10^{23} \mathrm{mol}^{-1}$
Raio da Terra (R_{\oplus})	$6,378\times10^6\mathrm{m}$
Massa da terra (M_{\oplus})	$5,97 \times 10^{24} \mathrm{kg}$
Constante dielétrica no vácuo (ϵ_0)	$8.85 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-1}$
Constante de Stefan-Boltzmann (σ)	$5,67 \times 10^{-8} \mathrm{W/m^2 K^4}$

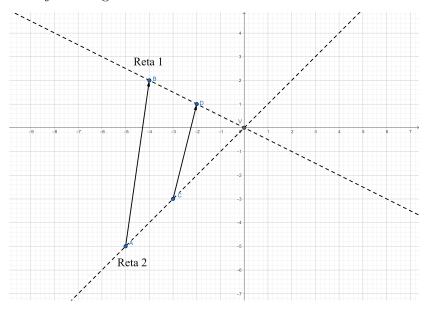
Importante! Cada erro algébrico acarretará em uma penalização de -0,3pt. Além disso, a correção deverá ser feita a risca de acordo com o esquema de pontuação.



Questão 1. Onde está a lente?¹

Solução item A.1

A principal característica do vértice da lente é: o raio que passa por ele não sofre desvios. Ou seja, sendo o vértice da lente V, dado um ponto P e sua imagem P' é fato que P, P' e V são colineares. Veja a imagem:



Note que D é a imagem de B e C é a imagem de A. Dessa forma, o vértices da lente é o ponto de interseção da reta que passa por B e D e da reta que passa por A e C.

A reta 1 é:

$$y = -\frac{1}{2}x\tag{1}$$

Enquanto a reta 2 é:

$$y = x \tag{2}$$

O ponto de encontro delas ocorre em x=y=0 e portanto essas são as coordenadas do vértice:

$$V = (0,0) \tag{3}$$

Esquema de pontuação:

- 1,0 ponto pela condição do vértice estar alinhado com imagem e objeto.
- 0,5 pontos por mostrar que está na origem.

¹Autoria de João Victor Evers C.

Solução A.2

Existe pelo menos dois argumentos para mostrar isso:

- Argumento 1: o posicionamento de objeto, imagem e lente sugere que a imagem seja virtual, já que é formada pelo prologamento do raio que passa pelo vértice;
- Argumento 2: a imagem é direita e é fato que toda imagem direita é virtual.

Esquema de pontuação:

• Qualquer argumento coerente que chegue à resposta **imagem virtual** ganhará pontuação completa (0,5pt).

Solução B.1

O ângulo $\alpha + \beta$ é a soma dos ângulos γ_1 da reta AC com a horinzontal e γ_2 da reta BD com a horizontal.

Pelas equações de reta (1) e (2), encontramos:

$$\tan \gamma_1 = 1 \ e \ \tan \gamma_2 = \frac{1}{2} \tag{4}$$

Portanto:

$$\alpha + \beta = 45^{\circ} + \arctan\left(\frac{1}{2}\right) \tag{5}$$

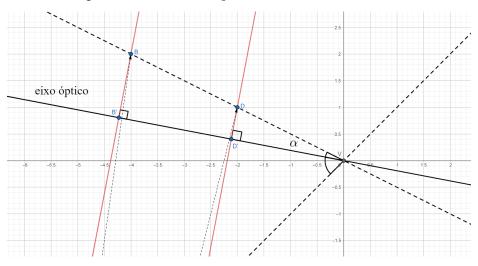
$$\alpha + \beta \approx 71,56^{\circ} \tag{6}$$

Esquema de pontuação:

• Qualquer método correto que chegue à $\alpha + \beta \approx 71,56^{\circ}$ ganhará pontuação completa (0,5pt).

Solução B.2

Veja a figura abaixo representando a situação:



Os pontos B' e D' são as projeções de B e D sobre o eixo óptico, respectivamente. As distância d_B e d_D são VB' e VD', respectivamente.

Olhe para os triângulos VD'D e VB'B, que são retângulos em B' e D'. Utilizando a definição de cosseno encontramos:

$$VB' = d_B \cos \alpha \ e \ VD' = d_D \cos \alpha \tag{7}$$

Analogamente para $A \in C$:

$$VA' = d_A \cos \beta \ e \ VC' = d_C \cos \beta \tag{8}$$

Para $p_A,\,p_B$ temos dois objetos e portanto essas quantidades são positivas:

$$p_A = d_A \cos \beta \ e \ p_B = d_B \cos \alpha \tag{9}$$

Porém p_C^\prime e p_D^\prime são negativos, já que C e Dsão imagens virtuais. Veja:

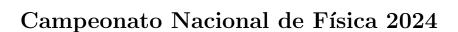
$$p_C' = -d_D \cos \beta \ e \ p_D' = -d_C \cos \alpha \tag{10}$$

Esquema de pontuação:

- 0,3pt por cada módulo correto;
- 0,4pt por cada sinal de menos em p'_C e p'_D .

Solução B.3

Devemos aplicar diretamente a equação dos pontos conjugados de Gauss, veja:



$$\frac{1}{f} = \frac{1}{p_A} + \frac{1}{p_C'} \tag{11}$$

$$\frac{1}{f} = \frac{1}{p_B} + \frac{1}{p_D'} \tag{12}$$

O que devemos fazer é igualar os lados direitos das equações (11) e (12), resultando em:

$$\frac{1}{p_A} + \frac{1}{p_C'} = \frac{1}{p_B} + \frac{1}{p_D'} \tag{13}$$

E substituindo os resultados do item B.2 obtemos:

$$\frac{1}{\cos \alpha} \left(\frac{1}{d_B} - \frac{1}{d_D} \right) = \frac{1}{\cos \beta} \left(\frac{1}{d_A} - \frac{1}{d_C} \right) \tag{14}$$

Chegando ao seguinte resultado final:

$$\frac{\cos \beta}{\cos \alpha} = \left(\frac{d_B d_D}{d_A d_C}\right) \left(\frac{d_A - d_C}{d_B - d_D}\right) \tag{15}$$

Numericamente temos que $d_A=5\sqrt{2}$ u c, $d_C=3\sqrt{2}$ u c, $d_B=2\sqrt{5}$ e $d_D=\sqrt{5}$. Portanto:

$$\frac{\cos \beta}{\cos \alpha} = \sqrt{\frac{8}{45}} \approx 0,42 \tag{16}$$

Esquema de pontuação:

- 0,9pt pela equação dos pontos conjugados de Gauss;
- \bullet 0,3
pt pelos valores numéricos de $d_A,\,d_C,\,d_B$ e
 $d_D;$
- 0,3pt pela resposta final correta.

Solução B.4

Seja $\theta = \alpha + \beta$ e $k = \sqrt{\frac{8}{45}}$, então podemos utilizar a equação (16) para encontrar os valores desses ângulos, veja:

$$\frac{\cos \beta}{\cos (\theta - \beta)} = k \implies \cos \beta = k (\cos \theta \cos \beta + \sin \theta \sin \beta) \tag{17}$$

Daí, podemos isolar cosseno de um lado e seno do outro, obtendo:

$$\tan \beta = \frac{1 - k \cos \theta}{k \sin \theta} \tag{18}$$

E portanto:

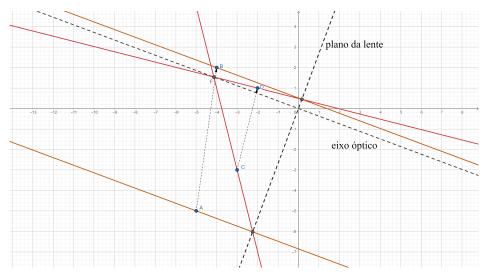
$$\beta \approx 65, 4^{\circ} \implies \alpha \approx 6, 16^{\circ}$$
(19)

Esquema de pontuação:

- 1pt por qualquer método que potencialmente leve à resultados corretos;
- 0,5pt pelos resultados corretos.

Solução C.1

Nós precisamos usar um raio notável bem conhecido para isso: incide paralelo e sai pelo foco.



Desenhamos o eixo óptico com a inclinação correta (de acordo com o item B.4). Os raios laranjas são os que incidem paralelos ao eixo óptico. Os vemelhos (raios refratados) precisam ter um prolongamento que passa por cima da imagem e do foco, representado na figura pelo ponto F (sobre o eixo óptico).

Esquema de pontuação:

- 0,5pt pelo eixo óptico com a inclinação correta;
- 1pt pelo uso do raio notável ou método equivalente.

Solução C.2

Como dito no enunciado, é permitido usar régua para fazer a estimativa. O valor encontrado utilizando o GeoGebra foi:

Campeonato Nacional de Física 2024 $\,$ Q1-6

$$|F| \approx 4,42 \text{ uc}$$
 (20)

É possível também levar em conta o sinal do foco e escrever a resposta F=-|F|.

Esquema de pontuação:

• 1pt para todos os valores $|F| \in [3, 98; 4, 86]$.

Questão 2. O sol de Fortaleza²

Solução A.1

Devemos olhar para um anel de espessura muito pequena dx, assim como indica a figura:

$$T_0 \quad dx = \begin{bmatrix} -1 & \Phi(x) \\ -1 & \Phi(x) \\ \Phi(x+dx) \end{bmatrix} = \begin{bmatrix} x \\ T_c \end{bmatrix}$$

A área desse anel é:

$$dA = 2\pi r dx \tag{21}$$

Do enunciado, sabemos que a intensidade é $I=\alpha \Delta T(x)=\alpha \left(T(x)-T_0\right)$, portanto a potência dP=IdA é:

$$dP = 2\pi\alpha \left(T(x) - T_0\right) r dx \tag{22}$$

Esquema de pontuação:

- 1pt por dividir a moeda em diversos anéis de espessura infinitesimal;
- 0,5pt pelo resultado correto.

Importante! Não levaremos em conta o sinal da potência perdida, visto que o que importa é a abordagem de cada estudante que, daqui em diante, deverá se manter coerente.

Solução A.2

No estado de equilíbrio um desses anéis não recebem nem cedem nenhum calor, então podemos equacionar para o fluxo energético (note que nossa abordagem prediz que dP > 0, portanto estamos sempre olhando para o módulo):

$$\Phi(x) = dP + \Phi(x + dx) \tag{23}$$

Usamos a definição de diferencial $\Phi(x+dx) - \Phi(x) = d\Phi(x)$, obtemos:

$$d\Phi(x) = -dP \implies d\Phi(x) = -2\pi\alpha \left(T(x) - T_0\right) r dx \tag{24}$$

Que leva à:

$$\boxed{\frac{d\Phi}{dx} = -2\pi\alpha r \Delta T} \tag{25}$$

²Autoria de João Victor Evers C.

Esquema de pontuação:

- 0,5pt pela coerência com os sinais;
- 1pt pela conservação da energia;
- 0,5pt pela resposta em módulo correta.

Solução A.3

Usando a equação (1) da prova, podemos equacionar:

$$-K\pi r^2 \frac{d^2T}{dr^2} = -2\pi\alpha r \Delta T \tag{26}$$

E, usando a propriedade de diferenciais citada:

$$\frac{d^2\Delta T}{dx^2} = \frac{2\alpha}{Kr}\Delta T\tag{27}$$

Que leva ao seguinte resultado:

$$\beta = \sqrt{\frac{2\alpha}{Kr}} \tag{28}$$

Esquema de pontuação:

- 1pt pelo desenvolvimento;
- 0,5pt pela resposta final.

Solução A.4

Nós precisamos simplesmente derivar a solução fornecida pelo enunciado:

$$\boxed{\frac{d\Delta T}{dx} = \beta \left(-Ae^{-\beta x} + Be^{\beta x} \right)}$$
 (29)

Esquema de pontuação:

• 1pt pela resposta correta.

Solução A.5

Podemos aproximar a expressão (29) bem como a solução dada no enunciado. É muito importante primeiro derivar e depois aproximar, já que o procedimento contrário ignoraria termos de segunda ordem no ΔT , sendo que esses termos seriam relevantes em $\frac{d\Delta T}{dx}$. Veja:

$$\Delta T(x) \approx A' - B'\beta x$$
 (30)

$$\boxed{\frac{d\Delta T}{dx} \approx \beta \left(\beta A' x - B'\right)} \tag{31}$$

Esquema de pontuação:

- 0,5pt por não ignorar os termos de segunda ordem para $\Delta T(x)$ na sua derivada;
- 0,5pt por cada expressão final correta.

Solução A.6

O ponto mais importante desse item é entender quais condições de contorno se aplicam nessa situação. Já que precisamos de duas constantes A' e B' devemos encontrar duas condições.

• O fluxo de calor por área perpendicular à área de seção da moeda em x=0 é igual à $E - \alpha \Delta T(0)$, já que pela a face de cima da moeda "escapa" uma potência igual a $\alpha \Delta T(0) \times \pi r^2$. Portanto:

$$E - \alpha A' = K\beta B' \implies E = \alpha A' + K\beta B'$$
 (32)

• Devido à alta condutividade térmica do solo, a temperatura da face de baixo da moeda é T_c e então $\Delta T(t) = \Delta T$. Portanto:

$$\Delta T_c = A' - B'\beta t \tag{33}$$

Esse par de equações resulta no seguinte sistema:

$$E = \alpha A' + K\beta B' \tag{34}$$

$$\Delta T_c = A' - B'\beta t \tag{35}$$

Que finalmente resulta em:

$$E = (\alpha + K\beta) A + (\alpha - K\beta) B$$

$$\Delta T_c = (1 - \beta t) A + (1 + \beta t) B$$
(36)

$$\Delta T_c = (1 - \beta t) A + (1 + \beta t) B$$
(37)

No enunciado não é pedido que se resolva, portanto quem encontrar expressões para A e B irá ganhar a mesma quantidade de pontos de quem chegou até as equações (34) e (35). Apenas por uma questão de completude as expressões para A e B são:

$$A = \frac{E(1+\beta t) - \Delta T_c(\alpha - K\beta)}{\alpha t + K}$$
(38)

$$B = \frac{\Delta T_c (\alpha + K\beta) - E (1 - \beta t)}{\beta (\alpha t + K)}$$
(39)

Esquema de pontuação:

- 1,2pt pela primeira condição de contorno (fluxo em x = 0);
- 0,8pt pela segunda condição de contorno (ΔT em x=t);
- 0,2pt pelas duas equações corretas.

Questão 3. Tédio na aula do Gurjão³

Solução A.1

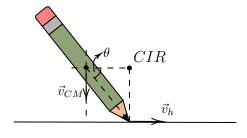
Primeiramente precisamos analisar a velocidade em dois pontos arbitrários do lápis. Como por definição o C.I.R é único, qualquer que seja o par de velocidades que escolhermos nos levará a ele. Sendo assim, a melhor decisão é escolher o centro de massa do lápis e a ponta dele. Os motivos são simples:

• Como o centro de massa fica na mesma abicssa, sua velocidade é sempre vertical.

$$F_x = \frac{dp_x}{dt} \Rightarrow p_x = \text{cte}_1 = 0 \Rightarrow x_{CM} = \text{cte}_2$$
 (40)

• Como a ponta do lápis está em contato com o chão, ela só pode se mover em x, portanto, sua velocidade é completamente horizontal.

Dito isso, podemos encontrar o C.I.R simplesmente prologando as perpendiculares das velocidades do CM e da ponta do lápis Como na figura a seguir:



Portanto:

$$\left| \vec{r}_{C.I.R} = \left(0, \frac{l}{2} \sin \theta \right) \right| \tag{41}$$

Esquema de Pontuação:

• 1,2pt por qualquer método coerente que chegue ao resultado correto.

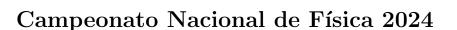
Solução A.2

Aqui, utilizaremos a definição do centro instantâneo de rotação. Como dito, é válido que para qualquer ponto do corpo, $v = \omega r$. Isto é:

$$v_{CM} = \left(\frac{l}{2}\cos\theta\right)\dot{\theta}\tag{42}$$

Solução alternativa:

³Adaptada de Introduction to Classical Mechanics (David Morin), problema 8.56 por João Victor Evers



$$v_{(CM)} = \frac{dy}{dt} = \frac{d}{dt} \left(\frac{l}{2} \sin \theta \right) \Rightarrow v_{CM} = \frac{l}{2} \cos \theta \dot{\theta}$$
 (43)

Esquema de pontuação:

• 1,2pt por qualquer método que chegue na resposta correta.

Solução A.3

Para encontrarmos a aceleração do centro de massa, basta derivar a velocidade, veja:

$$a_{CM} = \frac{dv_{CM}}{dt} = \frac{d}{dt} \left(\frac{l}{2} \cos \theta \dot{\theta} \right) \Rightarrow \left[a_{CM} = \frac{l}{2} \left(\cos \theta \ddot{\theta} - \sin \theta \dot{\theta}^2 \right) \right]$$
(44)

Esquema de pontuação:

• 1pt por qualquer método que chegue na resposta correta.

Solução B.1

Aqui, utilizaremos o fato de que a energia cinética depende de duas contribuições de energia: translacional e rotacional, assim:

$$K = \frac{1}{2}mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2 \tag{45}$$

Com o item **A.2** e usando $\omega = \dot{\theta}$, obtemos:

$$K = \frac{1}{2}m\left(\frac{l}{2}\cos\theta\dot{\theta}\right)^2 + \frac{1}{2}\left(\frac{1}{12}ml^2\right)\dot{\theta}^2\tag{46}$$

Simplificando:

$$K = \frac{1}{24}ml^2\dot{\theta}^2\left(1 + 3\cos\theta^2\right)$$
(47)

Esquema de pontuação:

- 0,8pt por incluir as duas contribuições da energia;
- 0,4pt pelo resultado final.

Solução B.2

Aqui, compararemos o momento em que o ângulo que o lápis faz com a horizontal é θ e o momento incial, onde a altura do centro de massa é $\frac{l}{2}$

$$\frac{1}{24}ml^2\dot{\theta}^2\left(1+3\cos\theta^2\right) + mg\frac{l}{2}\sin\theta = mg\frac{l}{2} \tag{48}$$

Portanto:

$$\dot{\theta} = \sqrt{\frac{12g}{l} \frac{(1 - \sin \theta)}{(1 + 3\cos \theta^2)}} \tag{49}$$

Esquema de pontuação:

- 0,8pt pela energia potencial correta;
- 0,4pt pela resposta final correta.

Solução B.3

A regra da cadeia para $\dot{\theta}^2$ temos o seguinte:

$$\frac{d}{d\theta} \left(\dot{\theta}^2 \right) = 2\dot{\theta} \frac{d\dot{\theta}}{d\theta} \tag{50}$$

Mas note o seguinte:

$$\dot{\theta} = \frac{d\theta}{dt} \implies \frac{\dot{\theta}}{d\theta} = \frac{1}{dt} \tag{51}$$

Portanto, substituindo (49) em (48):

$$\frac{d}{d\theta} \left(\dot{\theta}^2 \right) = 2 \frac{d\dot{\theta}}{dt} \implies \left[\ddot{\theta} = \frac{1}{2} \frac{d}{d\theta} \left(\dot{\theta}^2 \right) \right] \tag{52}$$

Esquema de pontuação:

• 1pt por qualquer método coerente que leve ao resultado correto.

Solução B.4

Precisamos montar a Segunda Lei de Newton para rotação do lápis usando o centro de massa como referencial:

$$\tau = I\alpha \implies -N\frac{l}{2}\cos\theta = \frac{1}{12}ml^2\ddot{\theta} \tag{53}$$

Note que o sinal de menos aparece já que o torque da normal visa diminuir o ângulo θ . O que resulta em:

$$N = -\frac{ml\ddot{\theta}}{6\cos\theta} \tag{54}$$

Esquema de pontuação:

- 1pt por $\tau = I\alpha$;
- 0,7pt pela resposta correta em módulo;
- 0,3pt pelo sinal correto.

Solução C.1

Aqui, para avaliarmos se a perca de contato é possível ou não, precisamos encontrar um $\theta \in \mathbb{R}$ para qual:

$$N(\theta) = 0 \tag{55}$$

A partir da equação 52 vemos que:

$$N(\theta) = 0 \Rightarrow \frac{1 + 3(1 - \sin \theta)^2}{(1 + 3\cos \theta^2)^2} = 0 \Rightarrow (1 - \sin \theta)^2 = -\frac{1}{3}$$
 (56)

O que é absurdo pois como $\sin \theta$ tem imagem em \mathbb{R} , $(1 - \sin \theta)^2 \ge 0$. Sendo assim, **não** existe perda de contato do lápis com o chão em nenhum momento até o fim de sua queda.

Esquema de pontuação:

• 1,2pt pelos argumentos coerentes para mostrar que o lápis não perde o contato.